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THEOREM 4. For most functions f €M, f'=0 a.e.

Analogous phenomena happen for first-order Lipschitz maps. We consider those functions
fFE€C([0,1]) for which
2w ST _ g
y—x
for all pairs of distinct points x,y in [0, 1], « and B being fixed real numbers (a <f). Let V g be

the family of all such functions; obviously V, o CV (max{|al,|B]}). V, z is of the second
category. We get analogously:

THEOREM 5. For most functions f €Y, 4, we have, at each point x €(0,1],
fF(xX)=a or f~(x)=8,
and, at each point x €[0, 1),

fF(x)=a or f*(x)=8.
THEOREM 6. For most functions f €V, 4, the set

S U ~(B8)

.has measure 1.
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AN ALGORITHM-INSPIRED PROOF OF THE SPECTRAL THEOREM IN E”

HERBERT S. WILF
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104

THEOREM. If A is a real symmetric matrix, there is a real orthogonal matrix Q such that QTAQ
is diagonal.

Of course, this is the spectral theorem. It implies that the eigenvalues are real, that there is a
pairwise orthogonal complete set of eigenvectors—namely, the columns of Q—and that the
dimension of an eigenspace is equal to the algebraic multiplicity of the eigenvalue.

Many proofs grapple with the question of finding enough independent eigenvectors for a
multiple eigenvalue, usually one at a time. We shall find the whole matrix Q at once by using the
main idea of Jacobi’s numerical method for calculating the eigenvalues and vectors, together
with a little compactness.

For an nX n real matrix A we shall use Od(4) for the sum of the squares of the off-diagonal
elements of 4, and O(n) will denote the set (group) of nX n orthogonal matrices.

Suppose we can prove the following.

LEMMA. If A is a nondiagonal real symmetric matrix, then there is a real orthogonal matrix J
such that Od(JTAJ) < Od(A4).

Then the theorem would follow quickly, for let 4 be real and symmetric. Consider the mapping f
that sends an orthogonal matrix P into f(P)=PTAP. For fixed A this is a continuous mapping
of O(n), a compact set, and so f(O(n)) is compact. Let f(Q)=D be a point at which the
continuous function Od attains its minimum value on the image set of f. This value must be
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zero, else D could play the role of 4 in the above lemma, and so it would not minimize Od,
concluding the proof.

It remains to prove the lemma. This was done by Jacobi, in his celebrated method of plane
rotations for computing eigenvalues and eigenvectors, as follows: Suppose a,,70, p7#~q. Then
take for J the matrix that agrees with the nXn identity matrix except in the four positions
(p.p),(P,9):(4,p),(q,9), where the entries are cos#, siné, —sinf,cosd, and the real angle @ is
chosen to make (J74J),,=0. It is easy to check that Od(J74J )=0d(4)—242, and we are
finished.

The proof readily generalizes to the complex Hermitian case.

Research for this paper was supported by the National Science Foundation.
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ARE 7, e, AND /2 EQUALLY DIFFICULT TO COMPUTE?

L. BAXTER

Department of Computer Science, York University, Downsview, Ontario, Canada

The general problem is to find efficient methods for calculating fundamental mathematical
constants. The simplest of methods is chosen, namely, iterative sequences expressed using the
operations of +, —, X, +, and /. Whereas iterative sequences exist which show that the time
to compute n digits of /2 and 7 are essentially the same, O(n-logn-loglogn), no equally
efficient method of computing e is known.

The efficient computation of \/2 and = compared to that of e depends on two factors: rate of
convergence and the complexity of multiplication. The iterative sequences converge quadrati-
cally, i.e., the number of significant digits doubles with each iteration. Consequently the time to
compute n digits of the constant is essentially the time to perform the last iteration. Since this
involves multiplications, the Schonhage-Strassen algorithm is used which multiplies two n digit
numbers in O(n-logn-loglogn) time [1, Section 7.5]. (Note that division or extraction of square
roots also has this complexity.) If either the convergence is linear or the classical O(n?)
multiplication algorithm is used, then the time to compute » digits is at least O(n?), which
theoretically is as bad as summing the appropriate series.

Specifically, Newton’s sequence x;=3(x;_;+2/x,_;) or the more convenient x;=
x;-1(6—x2_,)/4 converge quadratically to /2. These methods have essentially the same
complexity as that based on continued fractions [2]. Vieta’s formula for ,

2
—=VV(E+ivi) VE+iv(iE+ivi)
can be defined by the two iterative sequences

Xi=\/(*%+%xi—l); Yi=DVi—1%i x=0, y1=1,





